15_04 Converting Quantities in NCWedge

Question:
How do you convert the quantities from NCWedge to a tonnage value for
pavernent estimates?
Answer:
NCWedge produces a volume quantity in cubic feet (ft3) or cubic meter (m^{3}) in
the wedging quantity file ($* . W$ QF). projece: wedaing pavement ouantities

Since NCWedge volume quantities are in oubio feet (ft ${ }^{3}$) or oubic meter (m3) units,
the formulae have to adjust for both english and metric.
For english, through canceling of units, the tonnage value is derived from the
following formula.

$9 \mathrm{ft}^{2} / \mathrm{yect}^{2} \times 2000 \mathrm{Hem} / \mathrm{ton}$
For metric, through canceling of units, the metric tonnage value is derived from
the following formula.
NCWedge Volume $\left(\mathrm{m}^{3}\right) \times 1000 \mathrm{~mm} / \mathrm{m}^{\times} \times$Pavement Density $\left(\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~mm}\right)$
$1000 \mathrm{~kg} / \mathrm{mtn}$
Note the top 1000 cancels out the bottom 1000 , reducing the metric formula to
simply:
NCWedge Volume X Pavement Density
Below are examples of converting NCWedge volume quantities to weight
quantities only. Note the difference between these formulae and the form quantities only. Note the difference between these formulae and the formulae
Example 1.
f surface course, type S9.5C, yields 7.5 tons.
$100 \times 12 \times 112$ (S9.5C density or rate) $\quad-7.5$ TON
9×2000
Example 2 .
$100 \mathrm{~m}^{3}$ of of surface course, type S9.5C, yields 240 metric tons.
100×2.40 (59.5 C density or rate) $)=240 \mathrm{MTN}$
For faster calculations, the following table can be used when converting NCWNedge
volumes to weight/tonnage values for estimates. Simply multiply the NCWedge
volumes to weight/tonnage values for estimates. Simply multiply the NCWedge
volume by the density factor listed below.

Mix Type	$\begin{array}{\|c\|} \text { Rate } \\ \left(\mathrm{lbs} / \mathrm{yd}^{\mathrm{z}} \cdot \mathrm{in}\right) \\ \hline \end{array}$	English Factor (ton/ft ${ }^{3}$)	$\begin{gathered} \text { Rate } \\ \left(\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~mm}\right) \end{gathered}$	Metric Factor (mtn/m3)
Surface				
S4.75A	100	0.067	2.15	. 15
SF9.5A	110	0.073	2.35	2.35
S9.5B	112	0.075	2.40	2.40
S9.5C	112	0.075	2.40	2.40
S9.5D	112	0.075	2.40	2.40
S12.5C	112	0.075	2.40	2.40
S12.5D	112	0.075	2.40	2.40
Intermediate				
119.0B	114	0.076	2.45	2.45
119.0 C	114	0.076	2.45	2.45
I19.0D	114	0.076	2.45	2.45
Base				
B25.0B	114	0.076	2.45	2.45
B25.0C	114	0.076	2.45	2.45
PADC, P-57	90	0.060	1.95	1.95
PADC, P-78M	90	0.060	1.95	1.95

